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collecting data repetitively on a large quantity of participants,
in our case several thousand recordings. This feat is not
possible with professional-grade EEG systems; because of
long preparation time and expenses associated with collecting
data, most experimental studies include less than 32
participants.

Thousands of recordings bring new challenges to process
data. With a few dozen recordings, it is usually possible to
manually reject artifacts. However, this is no longer possible
with thousands of recordings. Methods have been developed
to automatically reject artifacts [4,5,11,12,13]. However, first
these methods are not compared to human inter-rater
reliability so it is difficult to assess their actual performance
compared to humans. Second, they are designed for high
density high quality EEG recording: they are not properly
validated for wearable EEG where the number of channels is
reduced and the data quality is usually lower than
research-grade systems, especially when participants are asked
to fit the wearable headset by themselves.

Here, we validate automated data rejection methods
applied to wearable EEG, based on the manual rejection of
three EEG human raters. Inter-rater consistency remains the
gold standard for assessing automated rejection methods, so
we compared how various rejection methods matched manual
rejections.

II. METHODS

A. Data collection
123 participants self-enrolled in a 4-month long meditation

course, for which they were asked to collect their EEG
brainwave on a daily basis with the Muse headset [9].
Participants signed consent forms and the study was approved
by the Center for the Study of Non-Symbolic Consciousness
Ethical Review Board.

Data collection was performed with the 4-channel Muse 1
headset at 220 Hz sampling rate and a custom smartphone app
developed by NeuroMore Inc. saved the raw time series (this
private app was designed for the meditation course and is not
available for public download). Participants went through a

Abstract—Wearable EEG headsets have transformed the 
landscape of EEG research. It is no longer necessary to use 
expensive equipment and over 30 minutes of preparation time to 
collect EEG data. Instead, participants may do it themselves in a 
few minutes from the comfort of their home. Confronted with 
processing thousands of such recordings, manual data cleaning 
has become a bottleneck, so we tested automated methods for 
cleaning data. To validate these methods, we asked three trained 
EEG human raters to clean 100 files of 12 minutes each, and use 
these manual rejections to assess the performance of automated 
cleaning methods for both channel rejections and continuous 
data rejections. We showed that rejecting channels based on 
abnormal spectrum yielded the best results. We also showed that 
the Artifact Subspace Reconstruction rejection method was the 
best method to reject continuous portions of data. Inter-rater 
consistency is the gold standard to assess the quality of 
automated data rejection methods, and we showed that our best 
rejection methods were not significantly different and might even 
outperform human raters. We provide a simple recipe and plugin 
for the popular EEGLAB software for automated data cleaning 
of Muse data. We hope this new tool will allow more widespread 
use of wearable EEG in clinical and research settings where large 
quantities of wearable EEG data need to be processed.
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I. INTRODUCTION

Wearable EEG, ranging in a couple of hundred dollars 
have transformed the landscape of EEG research. The data 
quality of such devices has proven of sufficient quality to 
collect EEG in various conditions, including continuous EEG 
[1] and event-related potentials [2]. Some of these wearable 
systems, like the Muse, use active electrodes similar to the one 
available on research-grade high-density EEG systems [3]. 
While the number of channels of wearable EEG systems 
remains limited (4 channels for the Muse), because of volume 
conduction, most EEG channels record activity from the 
whole brain. Therefore, for some use cases, a few channels 
might be sufficient to draw conclusions regarding the 
frequency content of the EEG and by inference some cognitive 
mechanisms. While wearable EEG will not replace the use of 
professional-grade EEG systems anytime soon, it allows
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short video training for how to collect EEG data but were not
trained by research staff on an individual basis. Each
participant was assigned a unique ID, the data was saved as a
custom .mat MATLAB file, and automatically sent to a
Dropbox cloud server. The 123 participants contributed 8,455
EEG sessions amounting to 58.9 Gb of data. The number of
sessions per participant ranged between 1 and 114, with most
participants contributing between 40 and 110 sessions. 7,331
sessions contained more than 30 seconds of data, and 4,881 of
these files contained raw EEG data - because of software
configuration issues, some sessions only contained EEG
spectral estimates computed by the Muse headset.

B. Data selection for manual data cleaning
Out of the 4,881 raw EEG data files, we randomly selected

100 files of a duration of about 12 minutes (average of 12
minutes and 28 seconds with 56-second standard deviation).

C. Manual data cleaning
Three human raters (first author AD, CB, and KM; see

acknowledgments), trained in EEG research, cleaned 89 files
by visual inspection of the EEG data (volunteer KM only
cleaned 89 of 100 files, and files that were not cleaned by all
human raters were not analyzed). Human raters first imported
the data into the EEGLAB software [6], using a custom-made
EEGLAB plugin that imported the raw EEG data, removing
the DC offset (the average value from each channel), and
low-pass filtered each channel at 40 Hz (FIR linear filter
pop_eegfiltnew of EEGLAB, 75 points, 10 Hz transition
bandwidth, 40 Hz passband edge, and 45 Hz cutoff frequency
(-6 dB)).

Human raters first identified bad channels based on their
spectrum and raw data traces. A transient artifact in an EEG
channel did not automatically qualify it as bad, because bad
data regions might be removed at a subsequent stage (see
below). However, an EEG channel with many transient
artifacts throughout the recording might qualify as bad: this
decision was left to the best judgment of the human rater.
Figure 1 shows examples of artifactual channels and data
regions.

Figure 1. Example of Muse EEG data with artifacts labeled by one
human rater. The top channel is bad throughout the entire recording
(of which 5 seconds are shown here). The green highlighted region
also corresponds to a bad data region. Time is indicated in seconds
and the amplitude scale is in µV.

Bad regions of data were selected based on the raw
spectral traces. The percentage of data rejected differed for
each human rater, ranging from an average of 35% to 46% of
the data (Table 1). The three human raters were asked to use
their best judgment and expertise to visually inspect the data,
and label bad channels and bad portions of data. Cleaning all
the files amounted to a total of 10 to 20 hours for each human
rater, spread out over several days. The three human raters
who cleaned the data will be referred to in the rest of this
manuscript as R1, R2, and R3.

D. Algorithm performance assessment
We randomly partitioned the 89 datasets into two sets

containing about 50% of the data: a training set (n=44) and a
validation set (n=45). The training set was used to identify the
optimum algorithm and the ideal parameters for that
algorithm. The validation set was used to assess the
performance of the optimum algorithm on new data. Because
we tested many algorithms and many parameters for these
algorithms, it is possible that we overfitted the data, and found
some parameters and algorithms that happened to closely
match manual rejection, but might not generalize to new data.
The use of a validation set ensures that the chosen algorithm
has high performance on new data.

For assessing algorithm performance, we computed
algorithm accuracy ranging from 0 (no match) to 1 (perfect
match). Accuracy is the percentage of correct classification
and combines the true positive and true negative rates. We
computed the match between pairs of human raters in the
same fashion.

For channel rejection performance of a given dataset, a
perfect match (accuracy of 1) would mean that the same
channels are selected for rejection by two different methods
(for example a specific human rater and a specific algorithm).
Accuracy was then averaged across datasets.

For continuous data rejection, an accuracy of 1 would
mean that the exact same samples (out of about 160,000
samples corresponding to 12 minutes at 220 sampling rate)
would be selected for rejection - which is extremely unlikely.
The accuracy thus estimated overlapping regions of rejection.
When comparing a given automated method for rejecting data
with a human rater, with the human rater considered as ground
truth (note that accuracy calculation is symmetrical so it is not
important which method is considered as ground truth), then
accuracy is equal to the true positive rate (TPR) plus the true
negative rate (TNR). For example, say both methods reject
30% of the data, and the methods overlap on 20% of the
rejected data. The true positive rate is 0.2, the false positive
rate (FPR) is 0.1, the false-negative rate is 0.1 (FNR), and the
true negative rate is 0.6, leading to an accuracy of
TPR+TNR=0.8 (which is also equal to 1-FPR-FNR).

For channels, we considered the error rate (1 minus
accuracy) and for continuous rejection, we considered
accuracy directly. This is because channel rejections are rare
events, and it is easier to read a table (Table 1) with
single-digit errors, usually below 10%.
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In this paper, we do not consider specificity, precision or
the F1 metric, which are other important concepts in signal
detection theory. This is because, for each dataset, we need to
combine algorithm performance calculated against several
human raters. Accuracy, which combines performance on
common rejected data portions and common clean regions is
the most natural metric to use. For each dataset, the accuracy
performance of a given automated rejection method is
calculated for each human rater and then averaged across
raters.

Note that for automated rejection of continuous data, we
first applied the optimum algorithm for channel rejection. This
algorithm rejected all data channels for 1 of the 89 datasets.
Because it was not possible to assess the performance on that
dataset, for continuous rejection only, we considered 44
datasets for the training set and 44 for the validation set.

E. Automated channel rejection methods
We considered several methods for artifact rejection. For

each method, we scanned the parameter space (grid-search)
and identified the parameter that best matched manual
rejection on the training set.

● Channel correlation. We used the clean_channels_nolocs
function of the Clean_rawdata v2.5 [8] plugin of
EEGLAB. We varied the correlation threshold parameter
from 0.2 to 0.3 in 0.01 increments. We set the
IgnoredQuantile parameter to 0.05 and used the default
values for other parameters.

● Channel standard deviation. We computed the standard
deviation of each channel raw signal and set a threshold
ranging between 1 and 200 microvolts in increments of 5
microvolts. When a given channel standard deviation
exceeded the threshold, it was labeled for rejection.

● Spectral thresholding. We computed the log-power
spectrum of each channel using the pop_spectopo
function of EEGLAB which uses the pwelch function of
MATLAB (window and discrete Fourier transform length
of 1 second with an overlap of 0 seconds). Different
frequency bands were considered 0-5 Hz, 5-15 Hz, 15-25
Hz, 25-35 Hz, 35-45 Hz, 45-55 Hz, 0-55 Hz, 5-55 Hz,
15-55 Hz. For each frequency band, we scanned an array
of threshold values ranging from 10 to 50 log10(µV2)/Hz
in increments of 1. We disabled normalization and used
default values for other parameters. Usually, with
high-density montage, the pop_rejchan function
normalizes measures across channels allowing to set
threshold in terms of the standard deviation of the spectral
measure. However, with only 4 channels, it is not possible
to normalize measures across channels to reject a few
outliers, so the absolute spectral measure value had to be
used. When a given channel measure value exceeded the
threshold, it was labeled for rejection.

For each algorithm, we took the best rejection performance.
We verified that for each algorithm, the best performance
corresponded to a maximum.

We also tried rejecting data channels based on probability and
kurtosis using the pop_rejchan function of EEGLAB. These
functions failed, the probability function because it is not
possible to assess improbable channels using only 4 channels,
and the Kurtosis function because absolute Kurtosis tends to
vary widely across datasets, not allowing to set a common
threshold across dataset (the best performance we obtained
with Kurtosis was when the threshold was high and no data
was rejected).

F. Automated continuous rejection methods
We considered the three continuous rejection methods.

● Artifact Subspace Reconstruction (ASR). We used the
clean_artifact function of the Clean_rawdata v2.5 [8]
plugin of EEGLAB. We varied the
WindowCriterionTolerances argument from 5 to 15 in
increments of 1, set the WindowCriterion parameter to 0
(to automatically reject bad portions of data instead of
trying to correct them), and disabled all other features
including BurstRemoval. We used default values for
filtering parameters.

● Spectral thresholding. We use the pop_rejcont function of
EEGLAB to reject artifacts in the 5-55 Hz frequency
range with a threshold ranging from 5 to 15 log10(µV2).
All other parameters were left as default. We informally
tried other frequency ranges as well, including some up to
120 Hz, but this did not increase performance. Given that
5-55 Hz was the best frequency range for removing bad
channels, it was deemed appropriate for continuous data
rejection.

● Data limits. We used the pop_continuousartdet function
of ERPLAB (v8.10) [7] which rejects data exceeding
pre-defined amplitude limits (ampth parameter). We set
the threshold from 50 to 110 µV in increments of 5. All
other parameters were left as default, including the
bandpass filter parameters - not set by default. Using the
bandpass parameter would be similar to using the
pop_rejcont spectral thresholding function described
above.

For each algorithm, we use the best rejection performance. We
verified that for each algorithm, the best performance
corresponded to a maximum.

III. RESULTS

We first assess performance on channel rejection, then on
continuous data rejection after bad channels had been
removed.

A. Automated channel rejection
Table 1 shows the performance for different channel artifact
rejection methods (See Methods). Several spectral
thresholding methods have similar performance. The best
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method is spectral thresholding between 5 and 55Hz with a
threshold of 25 log10(µV2)/Hz (see Methods). This method
also has a wide frequency range which makes it more robust to
changes at specific frequencies. The channel correlation
method is not significantly better than no rejection (the 95%
confidence intervals for the two rejections overlap). The
standard deviation method performed significantly better than
no rejection.

# rejections vs R1 vs R2 vs R3 Average error
R1 31 n/a 9.4 6.5 8
R2 45 9.4 n/a 9.9 9.7
R3 42 6.5 9.9 n/a 8.2

No  rejection 0 17.6 25.6 23.9 22.3 (18.8-26.2)
Correlation 18 14.5 19.9 18.5 17.6 (14.4-20.8)

Standard-dev 30 8.8 11.9 11.6 10.8 (8.1-13.3)
0-5 Hz 16 13.1 17.9 16.2 15.7 (12.7-18.7)

5-15 Hz 29 10.8 11.4 14.2 12.1 (9.3-14.8)
15-25 Hz 29 5.7 9.4 9.9 8.3 (5.9-10.3)
25-35 Hz 31 5.7 9.4 9.9 8.3 (6.0-10.6)
35-45 Hz 30 5.4 9.7 9.4 8.1 (5.7-10.2)
45-55 Hz 35 8.5 10.5 9.9 9.7 (7.0-11.9)
0-55 Hz 17 12.5 17 15.6 15.1 (12.1-18.2)
5-55 Hz 37 7.1 7.1 9.9 8.0 (5.5-10.0)

15-55 Hz 32 6.2 8.5 10.5 8.4 (6.1-10.6)

Table 1. Channel automated rejection methods’ performance on the
training set. R1, R2, R3 are human raters 1, 2, and 3. Different
rejection methods are shown on each row and compared with the
rejection of R1, R2, and R3 in columns 3, 4, and 5. “# rejections”
indicates the total number of channels rejected across all datasets of
the training set. The last column shows the average error for a given
method (averaging errors obtained against R1, R2, and R3) as well as
the 95% confidence interval in parenthesis obtained by bootstrap. The
different rejection methods on each row are: no rejection, rejection
based on channel correlation, standard deviation, and spectral
thresholding in different frequency bands. For each method, we scan
a collection of parameter values, and the best performance is retained
(see Methods). The best method is spectral thresholding between
5-55 Hz with a threshold of 25.

We then assessed the performance of the best method on
the validation data. The selected rejection method achieved
lower inter-rating error compared to all human participants,
although with only 3 human raters it was not possible to assess
significance. Because human rater average error is included in
the selected automated channel rejection method’s 95%
confidence intervals, this method is not significantly worse
than a human rater (if different, it is likely better).

# rejections vs R1 vs R2 vs R3 Average error
R1 37 n/a 5.3 10.1 7.7
R2 40 5.3 n/a 10.6 7.9
R3 53 10.1 10.6 n/a 10.3

5-55 Hz 38 4.4 6.9 1065 7.3 (5.0-9.2)

Table 2. Best automated channel rejection method performance on
the validation set. Only the best method from Table 1 is applied to the
validation set. See Table 1 for additional column and row
descriptions.

B. Automated continuous data rejection
Table 3 shows the performance for different continuous data
artifact rejection methods (See Methods). Inter-rater
reliability of human raters was comparable to those reported in

the literature [10]. The ASR method performed significantly
better than all other rejection methods.

% rejection vs R1 vs R2 vs R3 Accuracy

R1 43 n/a 78.7 77.9 78.3
R2 46 78.7 n/a 75.9 77.3
R3 35 77.9 75.9 n/a 76.9

No  rejection 0 56.9 55.4 66.1 59.5 (55.4-63.0)
ASR (11) 40 80.1 77.8 77.4 78.4 (76.2-80.6)
Spec (10) 28 72.7 70.9 75.9 73.2 (71.1-75.2)

Data limit (60) 51 68.1 65.3 65.6 66.3 (62.6-70.1)

Table 3. Continuous data automated rejection methods’ performance
on the training set. R1, R2, R3 indicate human raters 1, 2, and 3.
Different rejection methods are shown and compared with the
rejection of R1, R2, and R3 in columns 3, 4, and 5. “% rejection”
indicates the percentage of rejected data, and the last column shows
the average accuracy of a given method (averaging accuracy obtained
against R1, R2, and R3) as well as the 95% confidence interval in
parenthesis. The methods to reject data are: no rejection,
rejection-based ASR, and spectral thresholding in the 5-55 Hz
frequency bands, and a method testing if the data exceeds pre-defined
limits. The number in parenthesis after the algorithm name indicates
the optimal parameter value (see Methods). The best method is the
ASR method with a parameter of 11.

We then assessed the performance of the best rejection
method on the validation set. The ASR rejection method
achieved lower inter-rating error compared to all human
participants, although with only 3 human raters, it was not
possible to assess significance. 95% confidence intervals
indicate that the automated method is not significantly worse
than a human rater (if different, it is likely better).

% rejection vs R1 vs R2 vs R3 Accuracy

R1 37 n/a 80.7 79.7 80.2
R2 37 80.7 n/a 78 79.4
R3 30 79.7 78 n/a 78.8

ASR (11) 31 81.9 82.4 80.6 81.6 (79.5 83.6)

Table 4. Best automated continuous data rejection method
performance on the validation set. Only the best method from Table 3
is applied to the validation set. See Table 3 for additional column and
row descriptions.

C. EEGLAB plugin
We have updated the Muse import plugin (MuseMonitor v4.0)
to include parameters for automated rejection (Figure 2). Upon
importing files, users have the choice to automatically remove
bad channels and bad portions of data with the optimal
parameters found in this report. Note that users may also use
this function from the command line for automated processing
on thousands of data files.
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Figure 2. The EEGLAB Muse import plugin (MuseMonitor v4.0)
was modified to include options to automatically reject bad channels
and bad portions of data based on the methods and parameters found
in this report.

IV. DISCUSSION

We have shown that it is possible to find automated data
rejection methods that were not significantly worse than
human manual rejections. If different, the performance of
these algorithms was likely better than human raters, because
their rejections were closer to all human raters than raters’
rejections were with each other.

It is interesting to note that standard methods for
high-density EEG, such as the correlation of neighboring
channels, are inefficient with low-density montages. This is
because these methods assume a few outliers in a large
number of channels. We also tried independent component
analysis (ICA) [4] on a few datasets and obtained poor results.
ICA performs well on high-density montages, and there is no
theoretical reason why it should not perform well with 4
channels, so this requires further investigation.

The validated data rejection tools we presented will allow
the automated processing of large numbers of data files. It is
possible that automated methods based on machine learning
(such as support vector machines, random forest, or deep
learning) could achieve even higher performance. However,
the standard and validated methods we used have the
advantage of simplicity. In addition, the high performance on
the validation data shows that, because we only fitted one
parameter, these methods are robust to overfitting, which
might not be the case for machine learning methods.
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